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Spontaneous synchronization in a Josephson transmission line

D. Tsygankov and K. Wiesenfeld
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

~Received 26 April 2002; published 23 September 2002!

At high frequencies, the dynamics of a Josephson array shows fundamental differences from its low-
frequency behavior. We consider a simple array where the high-frequency effects are dominant, a current
biased series array without any external load. Despite the absence of a load, the oscillators are dynamically
coupled at high frequencies, and synchronized states can be attracting. We investigate the character and
stability of the synchronized states.

DOI: 10.1103/PhysRevE.66.036215 PACS number~s!: 05.45.Xt, 84.40.Az, 74.50.1r
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I. INTRODUCTION

The study of synchronization in populations of nonline
oscillators is one of the best developed areas of nonlin
dynamics of many degree of freedom systems. The field
mains very active, as new variations of the problem are
plored. The general development of the subject has p
ceeded along two complementary tracks. One track consi
abstract generic models and variations thereof, the Kuram
model being the most famous~and important! of this type
@1#. The other track considers particular physical syste
Prominent among these are the Josephson arrays, that,
class, provide a varied set of examples to explore.

The motivation for studying Josephson arrays is twofo
On the one hand they have interesting fundamental pro
ties, including a surprising integrability@2# typically found
only in Hamiltonian systems; they were also shown to p
vide a direct physical realization of the Kuramoto model@3#.
There is also a practical motivation. These superconduc
arrays can operate at extremely high frequencies~up to about
a terahertz! and are therefore of interest as amplifiers a
sources of electromagnetic radiation in the submillimeter
gime@4#. For most applications, these arrays would be use
only if the junctions mutually frequency and phase lock in
a dynamical state with a high degree of coherence.

The technological motivation inevitably drives one
consider ever higher operating frequencies and larger arr
However, in this limit there is a breakdown of the circu
laws typically used to derive the governing dynamical eq
tions @5#. In fact, experiments that have reported on the hi
est power levels were operating in this regime@6,7#. Other
experiments have dramatically illustrated the need to incl
the distributed nature of high-frequency arrays, by dir
comparison of arrays that behave quite differently but h
the same lumped circuit description@8#.

Despite its importance, our present theoretical und
standing of synchronization in the high-frequency regime
relatively primitive. Detailed spatiotemporal information
unavailable from experiments on real Josephson arrays;
log simulations of one or another Josephson system h
provided some insight as compared to numerical simulati
@8–12#. Models of Josephson junctions coupled to a sing
mode resonant cavity, which picks up some of the chara
of the distributed problem, have also been studied@9,13,14#.

The goal of the present work is to make some fundam
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tal progress towards understanding spontaneous synchro
tion dynamics in a Josephson array. To this end, we cons
a simple physical realization: a current biased transmiss
line interrupted byN equally spaced, identical junctions. Th
is the load-free version of a model introduced in Ref.@8#. In
that work, numerical simulations suggested that the transm
sion line model replicated experimental data in cases wh
the lumped model did not.

A nice feature of the load-free system is that in the lo
frequency limit the junctions are dynamically uncoupled.
this sense, the system is ideally suited for exploring the n
dynamical features that emerge only at higher frequencie

Mathematically, the distributed problem is more difficu
to analyze than the corresponding lumped one, since the
erning dynamical equations have much lower symmetry. O
consequence is the absence of a perfectly synchronized
in which all oscillators have precisely the same output at
times. This raises the question of what dynamical state~s! to
track and how high a degree of synchronization can
achieved even in principle.

In this paper, we apply a perturbation technique that
proved very useful in earlier studies on lumped arra
@15,16#. The calculation leads to the identification of th
‘‘most-synchronized’’ dynamical state, and we are able
develop anN-dimensional map that we use to explore t
stability of this state. We use numerical simulations of t
full dynamical system both as a check of the analytic res
and as a means of exploring the dynamics where the m
synchronized state is unstable. The simulations reveal a
gime of obvious practical interest, where the array is hig
synchronized even though the most-synchronized state is
stable.

II. PROBLEM SETUP AND METHOD OF SOLUTION

We begin by setting up the problem and putting it in
form suitable for the method of analysis. The perturbat
scheme we use leads to somewhat lengthy algebraic exp
sions, but since the idea of the calculation and its struct
are simple, it is worthwhile to discuss the main features
fore presenting the detailed calculation.

Consider a wire of length, interrupted by identical Jo-
sephson junctions at positionsx1 ,x2 , . . . ,xn21. A constant
bias currentI b is maintained at one end of the line and r
moved at the other. At low frequencies, the current within
©2002 The American Physical Society15-1
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wire is spatially uniform and equal to the value at its ends.
higher frequencies, the wire becomes an active dynam
entity, and can be modeled as a transmission line of ind
tanceL per unit length and capacitanceCtr per unit length.

The partial differential equation governing the dynam
of the Josephson transmission line can be determined by
sidering the finite element representation shown in Fig
Each inductor-capacitor segment represents a short le
Dx of the wire. Some segments also contain a Joseph
junction in series with the inductor. We assume that e
junction is small enough that it can be treated as a lum
element, although the system as a whole is spatially
tended. Current conservation implies

I i 215q̇i1I i , ~1!

whereqi is the charge on thei th capacitor,I i is the current in
the i th inductor, and the overdot denotes differentiation w
respect to time. Equating voltage drops of two paths fr
nodei to ground yields

qi

CtrDx
5LDxİ i1

qi 11

CtrDx
1

\

2e
Ḟ jd i ,i j

, ~2!

where\ is Planck’s constant,e is the magnitude of the elec
tronic charge, andF j is the difference in the phase of th
macroscopic quantum wave function across thej th junction.
The Kronecker delta is used to include the voltage d
across thej th Josephson junction if it happens to appear
segmenti of the transmission line; for example, if the 3r
junction appears in the 89th segment,i 3589. Combining
Eqs.~1! and ~2! gives

I i 1122I i1I i 21

v2Dx2
5 Ï i1

\

2eLDx
F̈ jd i ,i j

, ~3!

where we have usedv251/(LCtr). Passing to the limitDx
→0 yields an equation for the currentI (x,t),

]2I

]t2
2y2

]2I

]x2
1 (

j 51

n21
\

2eL
F̈ jd~x2xj !50. ~4!

The boundary conditions are

I ~0, t !5I ~,,t !5I b .

Meanwhile, since the current through thej th junction is
I (xj ,t), we have

FIG. 1. Finite-element schematic of a piece of the transmiss
line. The ‘‘X’’ denotes a Josephson junction. In the piece show
only one of the segments contains a junction.
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2e
F̈ j1

\

2eR
Ḟ j1I csinF j5I ~xj , t !, ~5!

whereC, R, and I c are the junction capacitance, resistan
and critical current, respectively.

To put these in dimensionless form, we first make t
rescalings

t→ \

2eRIc
t,

I→I cI ,

to get

]2I

]t2
2

\2y2

4e2R2I c
2

]2I

]x2
1 (

j 51

n21
\

2eIcL
F̈ jd~x2xj !50, ~6!

bF̈ j1Ḟ j1sinF j5I , ~7!

where b[2eCIcR
2/\. The next step is to turn the partia

differential equation into a set of ordinary differential equ
tions by expandingI (x, t) in spatial modes. A convenien
choice is to use the eigenfunctions for the unloaded transm
sion line, so that

I 5I b1 (
k51

`

Ak~ t !sinS pkx

l D . ~8!

It is easy to see that this automatically satisfies the bound
conditions for arbitrary values of the$Ak%. Expanding thed
function in the same basis,

d~x2xj !5 (
k51

`
2

l
sinS pkxj

l D sinS pkx

l D , ~9!

so that Eq.~6! becomes

Äk1c2k2Ak1a (
j 51

n21

F̈ jsinS pkxj

l D50 ~10!

and

bF̈ j1Ḟ j1sinF j5I b1 (
k51

`

AksinS pkxj

l D , ~11!

wherec5p\y/2elRIc ,a5\/elLIc , and Ak , I b , t, and b
are dimensionless.

We are going to construct a perturbation expansion ba
on the small parameterb51/I b , so we make one more res
caling: t→(1/I b)t andAk→I bAk , so that our governing sys
tem of equations becomes

Äk1 c̃2k2Ak1ã (
j 51

n21

F̈ jsinS pkxj

l D50, ~12!

b̃F̈ j1Ḟ j1b sinF j511 (
k51

`

AksinS pkxj

l D , ~13!

n
,

5-2
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wherec̃5cb, ã5ab, andb̃5b/b.
We expect the following perturbation method to be co

sistent if

b!1,ã,b̃,c̃2. ~14!

Let us estimate these coefficients. Taking typical experim
tal values of a junction (I c;100 mA, R;1 V, and C
;1 pF), and of a trasmission line (l;100 mm, L
;1028 H/m, andCtr;1028F/m, we find thaty51/ALCtr
;108 m/s, b;0.1, a;10, andc;10. Thus, we will use
the valuesb50.05,b50.5, anda andc from ;10 to;100
when displaying numerical results later on, in keeping w
the condition~14!. We note in passing that the characteris
frequency of the solution of Eq.~13! is vo52eRIc /\b
;1011 Hz.

In the following section, we develop an analytic calcu
tion based on a smallb expansion. Specifically, we let

Ak5Ak
(0)1bAk

(1)1b2Ak
(2)1•••, ~15!

Fk5Fk
(0)1bFk

(1)1b2Fk
(2)1•••. ~16!

Since b is the coefficient of the only nonlinear term, th
expansion reduces the problem to a set of linear equati
which allows us to get an explicit representation of the so
tion.

The structure of the solutions is as follows. To lowe
order, the junction phasesF j increase at a constant rate.
the familiar pendulum analogy for Josephson junctions,
corresponds to pendulums that overturn with uniform an
lar velocity. To this order, there are no voltage oscillatio
and the transmission line modes are inactive. The first-o
corrections merely introduce oscillations at the overturn
frequency. The crucial interactions show up in second or
and govern the stability of the state in which the juncti
oscillations are synchronized.

In fact, we find a large number of solutions which depe
on the initial values of the junction phases, and this allows
to derive anN-dimensional return map involving theN
phases, and it is this map that we use to investigate dyna
cal stability. We note that this map is not a bona fide Poinc´
return map since it does not explicitly involve the oth
phase space coordinates. Nevertheless, we expect it to
good approximation to the dynamics after an initial transi
time, as the other dynamical variables are effectively sla
by the N phase variables. This expectation is borne out
direct comparisons between the analytic solution and
merical simulations of the full set of equations.

III. PERTURBATION ANALYSIS

A. Zeroth order

To lowest order, Eqs.~12! and ~13! are

Äk
(0)1 c̃2k2Ak

(0)1ã (
j 51

n21

F̈ j
(0)sinS pkxj

l D50,
03621
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b̃F̈ j
(0)1Ḟ j

(0)511 (
k51

`

Ak
(0)sinS pkxj

l D .

We readily identify the followingN-parameter family of
steady state solutions where the junction phases overturn
constant rate:

Ak
(0)50 and F j

(0)5t1u j ,

where theu j are constants. One might wonder whether th
are also uniformly overturning solutions, but with nonze
Ak

(0) . Indeed, there can be such solutions; for example, if
of the junctions are placed at nodes of a particular spa
mode, say k5K, then there are solutions withAK(t)
;sin(c̃Kt) and all otherAk50. These solutions persist in
definitely only because we have assumed that the trans
sion line is perfectly lossless, and for this reason we ign
them in the ensuing analysis.~Including a small amount of
damping in the line would result in more complicated e
pressions later on without any compensating insight.!

B. First order

To first order inb,

Äk
(1)1 c̃2k2Ak

(1)1ã (
j 51

n21

F̈ j
(1)sinS pkxj

l D50, ~17!

b̃F̈ j
(1)1Ḟ j

(1)1sin~ t1u j !5 (
k51

`

Ak
(1)sinS pkxj

l D . ~18!

We find the solution of Eqs.~17! and ~18! in the form

Ak
(1)5cksint1dkcost, ~19!

Fk
(1)5aksint1bkcost. ~20!

We substitute Eqs.~19! and~20! into Eqs.~17! and~18!, and
in each equation we equate separately the terms proporti
to sint and cost. This yields four sets of equations for th
coefficientsaj ,bj ,cj ,dj ,

ck~12 c̃2k2!1ã (
j 51

n21

ajsinS pkxj

l D50, ~21!

dk~12 c̃2k2!1ã (
j 51

n21

bjsinS pkxj

l D50, ~22!

2b̃aj2bj1cosu j5 (
k51

`

cksinS pkxj

l D , ~23!

2b̃bj1aj1sinu j5 (
k51

`

dksinS pkxj

l D . ~24!

Multiplying Eq. ~23! by b̃ and subtracting the result from
Eq. ~24! gives, upon solving foraj ,
5-3
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aj5
1

11b̃2
~ b̃cosu j2sinu j !1

1

11b̃2

3 (
k51

`

~dk2b̃ck!sinS pkxj

l D , ~25!

whereas multiplying Eq.~24! by b̃ and adding the result to
Eq. ~23! leads to an expression forbj ,

bj5
1

11b̃2
~ b̃ sinu j1cosu j !2

1

11b̃2

3 (
k51

`

~b̃dk1ck!sinS pkxj

l D . ~26!

Let

Sk8k5 (
j 51

n21

sinS pk8xj

l D sinS pkxj

l D .

Then substituting Eqs.~25! and ~26! into Eqs.~21! and ~22!
gives

ck~12 c̃2k2!1
ã

11b̃2 (
j 51

n21

~ b̃ cosu j2sinu j !sinS pkxj

l D
1

ã

11b̃2 (
k851

`

~dk82b̃ck8!Sk8k50,

dk~12 c̃2k2!1
ã

11b̃2 (
j 51

n21

~ b̃sinu j1cosu j !sinS pkxj

l D
2

ã

11b̃2 (
k851

`

~b̃dk81ck8!Sk8k50.

So far, our calculation is good for any spatial distributi
of junctions. We now specialize to the important case
equally spaced junctions:xj5 l j /n, where j 51,2, . . . ,n
21. ThenSk8k5(n/2)dk8k @17#, and the last expressions d
couple ink. It is then a straightforward matter to solve the
with the results

ck5P(
j 51

n21
b̃H1Mk

Mk
21H2

sinu jsinS pk j

n D
1P(

j 51

n21
H2b̃Mk

Mk
21H2

cosu jsinS pk j

n D ,

dk52P(
j 51

n21
b̃H1Mk

Mk
21H2

cosu jsinS pk j

n D
1P(

j 51

n21
H2b̃Mk

Mk
21H2

sinu jsinS pk j

n D ,
03621
f

,

where Mk[12 c̃2k22b̃H,P[2H/n, and H[ãn/@2(1
1b̃2)#.

Finally, we substitute this back into Eqs.~25! and ~26!,

aj5
P

ã
~ b̃ cosu j2sinu j !1

P2

ã
(
i 51

n21

(
k51

`
H~12b̃2!22b̃Mk

Mk
21H2

3sinu isinS pki

n D sinS pk j

n D
2

P2

ã
(
i 51

n21

(
k51

`
Mk~12b̃2!12b̃H

Mk
21H2

3cosu isinS pki

n D sinS pk j

n D ,

bj5
P

ã
~ b̃ sinu j1cosu j !2

P2

ã
(
i 51

n21

(
k51

`
H~12b̃2!22b̃Mk

Mk
21H2

3cosu isinS pki

n D sinS pk j

n D
2

P2

ã
(
i 51

n21

(
k51

`
Mk~12b̃2!12b̃H

Mk
21H2

3sinu isinS pki

n D sinS pk j

n D .

C. Second order

The second-order expansion of Eqs.~12! and ~13! gives

Äk
(2)1 c̃2k2Ak

(2)1ã (
j 51

n21

F̈ j
(2)sinS pkxj

l D50, ~27!

b̃F̈ j
(2)1Ḟ j

(2)1cos~ t1u j !F j
(1)5 (

k51

`

Ak
(2)sinS pkxj

l D .

~28!

Now, the third term on the left hand side is equal to the s
of a constant term plus second-Harmonic terms. Thus,
solution is of the form

F j
(2)52^bcos~ t1u j !F j

(1)&t1Ejsin 2t1F jcos 2t,
~29!

Ak
(2)5Gksin 2t1Hkcos 2t, ~30!

where the angular brackets denote a time average over
period. In Sec. V, where we consider the stability of so
tions, we do not therefore need explicit expressions for
coefficientsEj ,F j ,Gj , andH j . On the other hand, the sta
bility hinges crucially on the coefficient of the term propo
tional to t, which is
5-4
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^cos~ t1u j !F j
(1)&5

1

2
~bjcosu j2ajsinu j !

5
P

2ã
2

P2

2ã
(
i 51

n21

(
k51

`
H~12b̃2!22b̃Mk

Mk
21H2

3cos~u j2u i !sinS pki

n D sinS pk j

n D
1

P2

2ã
(
i 51

n21

(
k51

`
Mk~12b̃2!12b̃H

Mk
21H2

3sin~u j2u i !sinS pki

n D sinS pk j

n D . ~31!

IV. THE MOST-SYNCHRONIZED STATE

In this section we explore the characteristics of the
tained solution to first order inb in the case whenu j5u, for
all j. As noted previously, our system does not admit the t
of fully symmetric in-phase state that is found in ma
lumped circuit problems. However, the solution withu j5u
is the ‘‘most-synchronized’’ state in the sense that, in
limit b→0, this is the solution branch that coincides with t
in-phase state. As we will see, the wave forms for this s
can line up virtually perfectly even though the amplitud
can differ substantially from one oscillator to the next.

It is convenient to introduce the following notation:

s i j 5P(
k51

`
H~12b̃2!22b̃Mk

Mk
21H2

sinS pki

n D sinS pk j

n D ,

~32!

r i j 5P(
k51

`
Mk~12b̃2!12b̃H

Mk
21H2

sinS pki

n D sinS pk j

n D .

~33!

Then we can rewrite the coefficientsaj andbj in the form

aj5
P

ã
F S b̃2 (

i 51

n21

r i j D cosu2S 12 (
i 51

n21

s i j D sinuG , ~34!

bj5
P

ã
F S b̃2 (

i 51

n21

r i j D sinu1S 12 (
i 51

n21

s i j D cosuG . ~35!

Note that ask→`, the terms in Eqs.~32! and ~33! tend to
zero as 1/k2. Hence, for numerical purposes we can consi
finite sums choosing big enoughkmax for any required accu-
racy.

Next, we define an order parameter that represents
degree of synchronization of the array. The quantity of dir
03621
-

e

e
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physical interest is the voltage across a junction, and thi
proportional toḞ. To first order in our perturbation expan
sion, we have

Ḟ j511bḞ j
(1)1O~b2!511b~ajcost2bjsint !1O~b2!.

To study the effects of phase locking, we write this as

Ḟ j511bejsin~ t1 f j !1O~b2!,

so that a natural order parameter is

p5u^exp~ i f j !&u5U 1

~n21! (
j 51

n21

exp~ i f j !U. ~36!

We want to expressf j in terms of the derived quantitiess i j ,
r i j . Equating the last two expressions forḞ j gives

f j52arctan
aj

bj
, ~37!

and so, in view of Eqs.~34! and ~35!,

tanf j5

S 12(
i

s i j D sinu2S b̃2(
i

r i j D cosu

S 12(
i

s i j D cosu1S b̃2(
i

r i j D sinu

5
tanu2tanũ j

11tanu tanũ j

5tan~u2 ũ i !,

where for the moment we have introduced the quantity

tanũ j5

b̃2(
i

r i j

12(
i

s i j

.

Finally, then, we get the desired formula for the phase of
voltage wave form,

f j5u2arctan

b̃2(
i

r i j

12(
i

s i j

. ~38!

Meanwhile, the amplitude of the voltage wave form is

ej5Aaj
21bj

25
P

ã
AS b̃2(

i
r i j D 2

1S 12(
i

s i j D 2

.

~39!

The order parameter, Eq.~36!, is unity when all of the
voltage wave forms line up and it tends to be zero if t
5-5
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wave form phasesf j are randomly distributed on the interv
@2p,1p#. Figure 2 shows the dependence ofp on a andc.
There are regions where the order parameter is appr
mately 1 ~to within a few percent!, where it is relatively
small (;0.1) and where it has intermediate values. Figu

3, 4, and 5 demonstrate the behavior of the solutionḞ j in
these different regions of parameter space. Also shown
these figures are the corresponding results generated
direct numerical integration of the nonlinear different
equations~12! and ~13!. These are in good agreement wi
the analytically derived solution.

FIG. 2. Contour plot of the order parameterp as a function ofa
and c using the analytic result, Eq.~36!. Hereb50.05,b50.5, n
510, kmax540. The symbols 1, 2, and 3 indicate the points of t
parameter space that we used for the following Figs. 3, 4, an
correspondingly.

FIG. 3. FunctionsḞ j (t) corresponding to the point 1 on Fig.
(a548,c59.6) from the region withp'1.00. Although there are
nine junctions, only five curves are seen, since the wave form
junctions symmetrically located about the midpoint are identica
03621
i-

s

in
m

V. STABILITY OF THE MOST-SYNCHRONIZED STATE

Through second order, the solution forF j is

F j~ t !5t1u j1b~ajsint1bjcost !2b2~^cos~ t1u j !F j
(1)&t

1Ejsin 2t1F jcos 2t !1O~b3!.

Evaluating this att50 and t52p leads to@cf. Eqs. ~31!–
~33!#

F j~2p!5F j~0!12pS 12
b2P

2ã
1

b2P

2ã
(
i 51

n21

s i j cos@F j~0!

2F i~0!#2
b2P

2ã
(
i 51

n21

r i j sin@F j~0!2F i~0!# D ,

5

of

FIG. 4. FunctionsḞ j (t) corresponding to the point 2 on Fig.
(a548, c515.6) from the region withp'0.56.

FIG. 5. FunctionsḞ j (t) corresponding to the point 3 on Fig.
(a548, c519.2) from the region withp'0.11.
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where we have used the fact thatF j (0)5u j1O(b). We can
view this as anN-dimensional map for the phase dynamic
That it involves ‘‘only’’ N variables is significant, since thi
is much smaller than the phase space dimension of the o
nal problem. In effect, the map treats the other degree
freedom as being slaved to the junction phases.

Consider now orbits that are infinitesimally close to t
‘‘most-synchronized’’ solution we identified previously, s
that u j5u1du j , where udu j u!uuu. Then we getF j5F j

0

1dF j , where

F j
0~2p!5F0~0!1S 2p2

pb2P

ã
1

pb2P

ã
(
i 51

n21

s i j D ,

~40!

dF j~2p!5dF j~0!2
pb2P

ã
(
i 51

n21

r i j @dF j~0!2dF i~0!#,

~41!

with F0(0)5u anddF j (0)5du j . We now ask whether the
perturbations grow or shrink. We can rewrite Eq.~41! in
matrix form,

dFW ~2p!5TdFW ~0!,

where

T i j 5d i j S 12
pb2P

ã
(
m

rm jD 1
pb2P

ã
r i j . ~42!

If we denote byr the eigenvalue of this matrix which has th
largest magnitude, the stability condition isr<1.

Figure 6 summarizes the behavior ofr over the
(a,c)-parameter plane. We can identify four qualitively d
ferent regions of parameters space. Region~I! corresponds to
a regime where bothr and the order parameterp varying in

FIG. 6. Schematic~based on the contour plot of the maximu
eigenvalue ofT i j as a function ofa andc for b50.05,b50.5, n
510, kmax540), identifying qualitatively different regions of pa
rameter space.
03621
.

i-
of

an irregular fashion. This region falls outside the regim
where the perturbation expansion is valid, according to
condition ~14!. Region~II ! also corresponds to an unstab
regime, with the minimum eigenvalue ofT i j equal to 1 and
all the other eigenvalues greater than 1. Region~III ! corre-
sponds to a stable regime where the maximum eigenvalu
equal to 1 and all the other eigenvalues are less than 1.
gion ~IV ! also corresponds to a stable regime, but it is qu
tatively different from region~III ! by virtue of the fact that
all of the eigenvalues here are close to 1, so that this
region of very weak stability.

Figures 7 and 8 demonstrate the behavior of the solu
with parameters taken from opposite sides of the stab
threshold. Figure 7 corresponds to the pointA in region~II !,
so that the initially perturbed solution never tends to t

FIG. 7. FunctionsḞ j (t) andḞ j
0(t) corresponding to the pointA

on Fig. 6 (a532, c56.00; unstable regime!.

FIG. 8. FunctionsḞ j (t) andḞ j
0(t) corresponding to the pointB

on Fig. 6 (a540, c58.16; stable regime!.
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synchronized stateḞ j
0 . Figure 8 corresponds to the pointB

in region ~III ! where the initially perturbed solution con
verges to the in-phase state.

VI. SUMMARY AND DISCUSSION

Our primary motivation was to develop some fundame
tal theoretical understanding of the synchronization dyna
ics when the spatial extent of the array is a significant fac
As a practical matter, this is an important issue if arrays
to produce greater power levels and/or operate at very h
frequencies, since in either instance the system gets pu
out of the lumped circuit limit. We have chosen a relative
simple situation to underscore the new physics that ‘‘tu
on’’ in this regime. By considering a series array without
additional load, we have isolated the new coupling effec
without them~i.e., at low frequencies! the junctions are dy-
namically uncoupled, and no synchronization—in pha
splay phase or otherwise—is possible.

One property of the distributed system is that the ‘‘p
fectly’’ synchronized state—the so-called in-phase state—
not a possible solution. This makes the problem more su
to study than the corresponding load-coupled lumped arr
where the high degree of symmetry of the in-phase state
be exploited. One nice feature of the perturbation expans
we employed is that it naturally identifies a highly synchr
nized solution that may be thought of as the continuation
the solution branch containing the in-phase state. It is
state whose properties we analyzed.

Another interesting and somewhat unexpected resu
that the array can show significant synchronization e
when the most-synchronized state is unstable. The con
plot of Fig. 2 summarizes this aspect of the problem. It
consistent with the stability diagram Fig. 6, and in som
respects is equally useful. We also found a large region
parameter space where the most-synchronized state is s
but only very weakly so, and presumably in this regime
coherence would be easily corrupted by the presence
quenched disorder and dynamical noise.

One obviously interesting variation of the problem is
consider spatially clustered junctions, an architecture that
periments have shown can result in significantly higher o
put powers than arrays in which the junctions are equ
spaced@6–8#. This presents a great challenge for the theor
-
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since a nonuniform spacing of junctions lowers the symm
try of the problem still further. It may be that the proble
becomes tractable again for certain spatial patterns; in
event, very little is known theoretically about this problem

A natural question to ask is whether our results are se
tive to weak disorder. We have presented results only for
case where the junctions are identical and equally spa
The question of disorder deserves careful and systematic
vestigation, and we have not undertaken such a study. A
general rule, in regions of parameter space where the
chronized state is attracting, one expects the system beha
to be robust with respect to the addition of at least a sm
amount of disorder. Indeed, if the attractors are hyperboli
the usual case except at bifurcation points—we are gua
teed that the attractors persist and vary continuously w
arbitrary changes in the parameter values. To test this,
have run numerical simulations for our system@Eqs.~12! and
~13!#, including a 5% spread in the parametersb j and xj ,
whereb j involves the junction parameters andxj is the junc-
tion position. The behavior is not greatly changed, for e
ample, for the conditions in Fig. 3, the disorder has a ne
gible effect on phase synchronization, and introduc
variations of about 2% in the amplitudes. We might exp
the most significant changes to occur at the stability bou
ary of the synchronized state, and in the region where
synchronized state is~in the ideal case! only weakly stable.

Finally, we point out that the same considerations t
motivated the present work also apply to other physical
alizations of coupled oscillator arrays. Of particular note a
arrays of semiconductor oscillators, which are being used
implement new strategies for power combining, beam ste
ing, and beam shaping@18–20#. These arrays typically oper
ate in the distributed-coupling limit in direct analogy wit
the Josephson system we studied here. The spatial varia
of current in the stripline connecting the array elements a
as an intermediary that couples the various oscillators.
as in the Josephson problem, the various desirable dynam
states are highly synchronized. An analysis carried out al
the lines here could determine which stripline conditio
would be most favorable for achieving the target attracto
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