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Spontaneous synchronization in a Josephson transmission line
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At high frequencies, the dynamics of a Josephson array shows fundamental differences from its low-
frequency behavior. We consider a simple array where the high-frequency effects are dominant, a current
biased series array without any external load. Despite the absence of a load, the oscillators are dynamically
coupled at high frequencies, and synchronized states can be attracting. We investigate the character and
stability of the synchronized states.
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[. INTRODUCTION tal progress towards understanding spontaneous synchroniza-
tion dynamics in a Josephson array. To this end, we consider

The study of synchronization in populations of nonlineara simple physical realization: a current biased transmission
oscillators is one of the best developed areas of nonlinedine interrupted byN equally spaced, identical junctions. This
dynamics of many degree of freedom systems. The field reiS the load-free version of a model introduced in R&. In
mains very active, as new variations of the problem are exthat work, numerical simulations suggested that the transmis-
plored. The general development of the subject has prosion line model replicated experimental data in cases where
ceeded along two complementary tracks. One track considefg€ lumped model did not.
abstract generic models and variations thereof, the Kuramoto A hice feature of the load-free system is that in the low-
model being the most famougsnd important of this type frequency limit the junctions are dynamically uncoupled. In
[1]. The other track considers particular physical systemsthis sense, the system is ideally suited for exploring the new
Prominent among these are the Josephson arrays, that, aghéamical features that emerge only at higher frequencies.
class, provide a varied set of examples to explore. Mathematically, the distributed problem is more difficult

The motivation for studying Josephson arrays is twofold.to analyze than the corresponding lumped one, since the gov-
On the one hand they have interesting fundamental propefrning dynamical equations have much lower symmetry. One
ties, including a surprising integrability2] typically found ~ consequence is the absence of a perfectly synchronized state
only in Hamiltonian systems; they were also shown to prodn which all oscillators have precisely the same output at all
vide a direct physical realization of the Kuramoto mogjl  times. This raises the question of what dynamical ¢sate
There is also a practical motivation. These superconductinfack and how high a degree of synchronization can be
arrays can operate at extremely high frequengigsto about ~ achieved even in principle.

a terahertz and are therefore of interest as amplifiers and In this paper, we apply a perturbation technique that has
sources of electromagnetic radiation in the submillimeter reproved very useful in earlier studies on lumped arrays
g|me[4] For most app“cations' these arrays would be usefu[ls,lq. The calculation leads to the identification of the
only if the junctions mutually frequency and phase lock into“Most-synchronized” dynamical state, and we are able to
a dynamical state with a high degree of coherence. develop anN-dimensional map that we use to explore the

The technological motivation inevitably drives one to stability of this state. We use numerical simulations of the
consider ever higher operating frequencies and larger array8ll dynamical system both as a check of the analytic results
However, in this limit there is a breakdown of the circuit @hd as a means of exploring the dynamics where the most-
laws typically used to derive the governing dynamical equasynchronized state is unstable. The simulations reveal a re-
tions[5]. In fact, experiments that have reported on the high-gime of obvious practical interest, where the array is highly
est power levels were operating in this regifie7]. Other synchronized even though the most-synchronized state is un-
experiments have dramatically illustrated the need to includétable.
the distributed nature of high-frequency arrays, by direct
comparison of arrays that beh_av_e quite differently but have || bROBLEM SETUP AND METHOD OF SOLUTION
the same lumped circuit descripti8].

Despite its importance, our present theoretical under- We begin by setting up the problem and putting it in a
standing of synchronization in the high-frequency regime iform suitable for the method of analysis. The perturbation
relatively primitive. Detailed spatiotemporal information is scheme we use leads to somewhat lengthy algebraic expres-
unavailable from experiments on real Josephson arrays; anaions, but since the idea of the calculation and its structure
log simulations of one or another Josephson system havare simple, it is worthwhile to discuss the main features be-
provided some insight as compared to numerical simulationfore presenting the detailed calculation.

[8—12]. Models of Josephson junctions coupled to a single- Consider a wire of lengtif interrupted by identical Jo-

mode resonant cavity, which picks up some of the charactesephson junctions at positions,X,, ... X,—1. A constant

of the distributed problem, have also been studi#&d3,14. bias currentl,, is maintained at one end of the line and re-
The goal of the present work is to make some fundamenmoved at the other. At low frequencies, the current within the
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11, 1 LT
2—e¢j+ﬁ<bj+lcsmd>j—l(xj,t), (5)

Crax 4; 9.1
Lax
M whereC, R, andl, are the junction capacitance, resistance,

L, L L and critical current, respectively.

o ) ) o To put these in dimensionless form, we first make the
FIG. 1. Finite-element schematic of a piece of the transm'ss'or}escalings

line. The “X” denotes a Josephson junction. In the piece shown,
only one of the segments contains a junction.

t—

t,
wire is spatially uniform and equal to the value at its ends. At 2eRl
higher frequencies, the wire becomes an active dynamical

entity, and can be modeled as a transmission line of induc-

tancel per unit length and capacitan€g, per unit length.  to get

The partial differential equation governing the dynamics

of the Josephson transmission line can be determined by con- 42| h22 92 .
sidering the finite element representation shown in Fig. 1. ?_Wﬁﬂ:l 2L i0(x=x)=0, (6
Each inductor-capacitor segment represents a short length ¢ ¢

Ax of the wire. Some segments also contain a Josephson
junction in series with the inductor. We assume that each
junction is small enough that it can be treated as a Iumpe%
element, although the system as a whole is spatially exy
tended. Current conservation implies

=1,

n—-1

ﬁ(i)j‘f'(bj‘f'Sinq)j:', (7)

here B=2eCI.R?/%. The next step is to turn the partial
ifferential equation into a set of ordinary differential equa-
tions by expandind (x,t) in spatial modes. A convenient

. choice is to use the eigenfunctions for the unloaded transmis-
lica=ai+li, () sjon line, so that

whereq; is the charge on thigh capacitor]; is the current in * kX
theith inductor, and the overdot denotes differentiation with [=1,+ Z Ak(t)sin( I_) (8)
respect to time. Equating voltage drops of two paths from k=1

hodei to ground yields It is easy to see that this automatically satisfies the boundary

conditions for arbitrary values of th\,}. Expanding theS

% =LAXI; +% + %‘DJ 5i’ij, (2)  function in the same basis,
) ) ) - (kx| [ kX

wheref: is Planck’s constang is the magnitude of the elec- S(X—Xj)= > I—Sln( I—) Sln(l— : 9
tronic charge, andb; is the difference in the phase of the K=t
macroscopic quantum wave function acrossjtifiejunction. ¢4 that Eq.(6) becomes
The Kronecker delta is used to include the voltage drop
across thgth Josephson junction if it happens to appear in B n-1i wkx
segment of the transmission line; for example, if the 3rd At kA +a Y, <I>jsin( I—J) =0 (10)
junction appears in the 89th segmen=89. Combining =1
Egs.(1) and(2) gives and

|i+1_2|i+|i—l . h . . i * kX

UZAXZ :Ii+28LAX(I)j5i'ij, (3) B(I)]+(I>]+Slnq>]=|b+k§1 AkSin(I—J), (11)

where we have used?=1/(LC,,). Passing to the liminx ~ Wherec=nfivi2elIRI;,a=flelLl;, andA, Iy, t, and 8

—0 yields an equation for the currehx,t), are dimensionless.
We are going to construct a perturbation expansion based
pra 2 "lon on the small parametdr=1/,,, so we make one more res-
— P+ E —;5(x—x;)=0. (4) caling:t—(1/1,)t andA,— 1A, so that our governing sys-
at? ox2 =1 2elL! ] .
tem of equations becomes
The boundary conditions are L i 7kX;
A+ CUCA+a Y, dsin — =0 (12)
1(0,t)=1(€,t)=1,. I=1
Meanwhile, since the current through theh junction is 73(15;+Ci>j+bsind)j:1+2 Aksin( kaj), (13)
I(x;,t), we have k=1 |
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wherec=cb, a=ab, andB=p/b. 0 (0) o O] TR
We expect the following perturbation method to be con- BT+ D=1+ 21 AcsIn ——|.
sistent if =

o We readily identify the followingN-parameter family of
b<1la,B,c% (14)  steady state solutions where the junction phases overturn at a
constant rate:
Let us estimate these coefficients. Taking typical experimen-
tal values of a junction I(~100 uA, R~1 Q, and C AP=0 and ®V=t+9,
~1 pF), and of a trasmission linel+100xm, L )
~10"8 H/m, andC,,~10 8F/m, we find thatv=1/JLC,,  Where thef; are constants. One might wonder whether there
~108 m/s, B~0.1, a~10, andc~10. Thus, we will use &€ also uniformly overturning solutions, but with nonzero
the values=0.05, 3=0.5, ande andc from ~10to~100 A - Indeed, there can be such solutions; for example, if all

when displaying numerical results later on, in keeping withof the junctions are placed at nodes of a particular spatial
the condition(14). We note in passing that the characteristicmode, sayk=K, then there are solutions witl#(t)
frequency of the solution of Eq(13) is w,=2eRl,/Ab ~sin{cKt) and all otherA,=0. These solutions persist in-
~10M Hz. definitely only because we have assumed that the transmis-
In the following section, we develop an analytic calcula-Sion line is perfectly lossless, and for this reason we ignore

tion based on a smali expansion. Specifically, we let them in the ensuing analysi@including a small amount of
damping in the line would result in more complicated ex-

Ac=AL+bAD +b2AP+ .. ., (15)  Pressions later on without any compensating insjght.

B. First ord
(I)k:q)(ko)+ b(D(kl)+ bZ(I)(kZ)+ . (16) . . Irst oraer
To first order inb,

7T|(X]

|_) :0, (17)

Since b is the coefficient of the only nonlinear term, the n-1
expansion reduces the problem to a set of linear equations, A&1)+E2k2Aﬁl)+;E dbj(l)sin(
which allows us to get an explicit representation of the solu- =1
tion.

The structure of the solutions is as follows. To lowest e (1) L (1) 4 - W | TKX
order, the junction phaseB; increase at a constant rate. In BP+ DT+ sin(t+ ﬁj)zgl Ag’sin |—) (18)
the familiar pendulum analogy for Josephson junctions, this
corresponds to pendulums that overturn with uniform anguys find the solution of Eqg17) and(18) in the form
lar velocity. To this order, there are no voltage oscillations
and the transmission line modes are inactive. The first-order A® =c,sint+dycost, (19)
corrections merely introduce oscillations at the overturning
frequency. The crucial interactions show up in second order,
and govern the stability of the state in which the junction

oscillations are synchronized. We substitute Eqg19) and(20) into Egs.(17) and(18), and

In fact, we find a large number of solutions which dependi, g5ch equation we equate separately the terms proportional
on the initial values of the junction phases, and this allows U$5 sint and cog. This yields four sets of equations for the
to derive anN-dimensional return map involving thal L '

P 9 coefficientsa; ,b; ,c; ,d

phases, and it is this map that we use to investigate dynami- I

(M= a,sint+ bycost. (20)

cal stability. We note that this map is not a bona fide Poincare n-1 Tk
return map since it does not explicitly involve the other Ck(1—62k2)+}}z a;sin _')20, (21)
phase space coordinates. Nevertheless, we expect it to be a i=1 '
good approximation to the dynamics after an initial transient
time, as the other dynamical variables are effectively slaved ~o it [ KX
by the N phase variables. This expectation is borne out by di(1—ck )+a21 bjsin| ——| =0, (22)
direct comparisons between the analytic solution and nu- :
merical simulations of the full set of equations. o
~ . 7TkX]
—pBa;—bj+cosb;= E cksm( I—) , (23
Ill. PERTURBATION ANALYSIS Kt
A. Zeroth order - ) - [ kX
To lowest order, Eqs(12) and (13) are ~Bbj T3 Fsin ei‘k; dksm<|— ' (24)
n—1
Ai((0)+52sz(k0)+(~12 HOsin m> -0 Multiplying Eq. (23) by B and subtracting the result from
=1 ! | ' Eq. (24) gives, upon solving fom,
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where M,=1-'¢?k?—BH,P=2H/n, and H=an/[2(1

a;= J—SInHJ—)+1+—BZ +ﬁ2)] . . '
Finally, we substitute this back into Eq®5) and (26),
kE (dk BCk)Sln |_ (25) P _ Pzn 1 = H(l_'Bz)_z’BMk
== (Bcosh—sing)+= >, > ——
o - ) o a i=1 k=1 My+H
whereas multiplying Eq(24) by 8 and adding the result to
Eq. (23) leads to an expression ftr , . : (Trkl> (Wkl
X sin @;sin sin n
b= - P2 o M(1-B%)+2BH
J J 1+ﬁ2 —_ k
B @ (=1 k=1 MZ+H?
~ . 7T|(XJ
X > (Bdy+cysin ——|. (26) (ki 7k
k=1 X cosg;sin . sinf—|,
Let
P o w H(1-B*)-2BM,
k’x kx b.==(Bsinf,+cosh;) — =
,k—E sm(w J)sm<w| J). A i 2 21 M2+ H?
I k]
Then substituting Eqg25) and(26) into Egs.(21) and(22) X cosg;sinf —— n sin| — n
gives
- o w M(1-B%)+2BH
~o o a o ) 7TkXJ - = E 2 Me 2. 2
ck(1—c%k?)+ —— >, (Bcosd;—sinb;)sin — a F1k=1 Mi+H
1+8% =1 '
ki k]
pe °° _ X sin @;sin| — | sin| — ol
— BCk) Sk=0,
~ -1 " C. Second order
di(1—-c%k?) + a~2 E (Bsin 0j+COS0J-)Sin(1T|—Xj) The second-order expansion of E¢E2) and (13) gives
1+ =1

n-1
P A(2)+Czk2A(2)+a2 db(z)sm( Il(XJ
E (Bdy +Cr) Serk=0.

1+,82 K =1

=0, (27)

So far, our calculation is good for any spatial distribution =+ (2), (2 N (D) — S ) WkXJ
of junctions. We now specialize to the important case of BT+ T cogt 6) @, E Asing == I
equally spaced junctionsx;=Ij/n, where j=1,2,...n (29

—1. ThenSy = (n/2) 5, [17], and the last expressions de-

couple ink. It is then a straightforward matter to solve them, Now, the third term on the left hand side is equal to the sum
with the results of a constant term plus second-Harmonic terms. Thus, the

N1 ~ solution is of the form

C= ———sin#;sin| —
=T VI RTER n @)= —(bcogt+ ;) d{V)t+E;sin 2+ Fjcos 2,
n-1 H-BM ki (29
+P > 2—2kcos€jsin( —) .
=1 M2+H n AP =G,sin 2t+Hycos 2, (30)
B ! BH+M 7kj where the angular brackets denote a time average over one
di=— =RYE cosg;sin| —— period. In Sec. V, where we consider the stability of solu-
K tions, we do not therefore need explicit expressions for the
nlyo 7K coefficientsE; ,F;,G;, andH;. On the other hand, the sta-
+P > sin Hl-sm( —) , bility hinges crucially on the coefficient of the term propor-
=1 My n tional tot, which is
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physical interest is the voltage across a junction, and this is

proportional tod. To first order in our perturbation expan-
sion, we have

1
(cogt+ aj)<bj(l)>=§(bjcosej —a;sing;)

P P2 & H(1-BY)-2BM, . .
—== 2 2 ®;=1+bd+0(b?) =1+b(ajcost—bsint) + O(b?).

20 2a i=1k=1 MZ+H?
ki 7K To study the effects of phase locking, we write this as
X cog 0 — ai)sin( = )sm = )

o d;=1+besin(t+f;)+0(b?),
P2 "t & M(1-B%)+2BH

+ = so that a natural order parameter is
2a ;1 kzl Mi+H? P
ki Kj 1
Xsin(6;— 0)3|n( )sm( an). (3D p=|[(exp(if;))|= ) Zl exp(if))]. (36)

We want to express; in terms of the derived quantities; ,
pij - Equating the last two expressions fbf gives
In this section we explore the characteristics of the ob-
tained solution to first order i in the case whe®;= 6, for i
all j. As noted previously, our system does not admit the type fj=—arctan -, (37)
of fully symmetric in-phase state that is found in many !
lumped circuit problems. However, the solution wigj= ¢ and so, in view of Eqs(34) and(35),
is the “most-synchronized” state in the sense that, in the
limit b— 0, this is the solution branch that coincides with the

IV. THE MOST-SYNCHRONIZED STATE

in-phase state. As we will see, the wave forms for this state (1—2 aij)sin 0— (Z%—E pij)COSl9
can line up virtually perfectly even though the amplitudes _ : :
. . . tanf; =
can differ substantially from one oscillator to the next. ] ~ .
It is convenient to introduce the following notation: 1-2 oy |coso+ ﬁ_Zi pij |Sing
tand—tan g, .
2 . . =——=ta -6,
o= H(1-5%)~ 2BM in<77_k'>sin(w_kj), 1+tandtand, '
Vo ME+R? n
(320  Where for the moment we have introduced the quantity
M (1—B?)+2BH (wki) _ (wk]) 5 B_Z Pij
i = sin sin =
Pij “= M +H2 n tan@, .
(33 1-2 oy
I
Then we can rewrite the coefficierds andb; in the form Finally, then, we get the desired formula for the phase of the
voltage wave form,
=3 n-1 n—-1
aj=x= (E—i . pij)cosa—(l—iEl aij)sine}, (39 ,75—2 pij
pe = = i
f=60—arctan——. (38
1-2) oy
— n—-1 I
=~ ( Z )sm6+ 1- 2 ‘711)0059 (39 Meanwhile, the amplitude of the voltage wave form is
Note that ak—, the terms in Eqs(32) and (33) tend to B B P\/ ~ 2 2
zero as 2. Hence, for numerical purposes we can consider j=Vaj+bj== B~ ij| * 1_2 aij | -
finite sums choosing big enoud,., for any required accu- (39)

racy.
Next, we define an order parameter that represents the The order parameter, E¢36), is unity when all of the
degree of synchronization of the array. The quantity of direcvoltage wave forms line up and it tends to be zero if the
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numerical simulation analytical calculation

S5l 1.005 1.005
1.004} 1.004} p
1.003} [ 1.003} | |
1.002r 1.0021 i
1.001}] 1.001}
5 1 |\ [
0.999} 0.0t /|
0.008} 0.008}
0.997} 0.907}
- 0.996} 0.996}
%r 40 60 80 100 120 099%5 80 85 90 o5 %5 80 85 90 o5
o time time

FIG. 2. Contour plot of the order paramefeas a function ofx
and c using the analytic result, Eq36). Hereb=0.05,3=0.5,n
=10, kyayx=40. The symbols 1, 2, and 3 indicate the points of the

parameter space that we used for the following Figs. 3, 4, and §/ STABILITY OF THE MOST-SYNCHRONIZED STATE
correspondingly. '

FIG. 4. Functionsbj(t) corresponding to the point 2 on Fig. 2
(=48, c=15.6) from the region witlp~0.56.

Through second order, the solution by is

wave form phases; are randomly distributed on the interval

[ — m,+ 7]. Figure 2 shows the dependencepain o andc. ®;(t)=t+ 6;+b(a;sint + bjcost) —b?((cog t+ ;) D)t
There are regions where the order parameter is approxi-
mately 1 (to within a few percent where it is relatively
small (~0.1) and where it has intermediate values. Figures ) _
3, 4, and 5 demonstrate the behavior of the solutignin E?’\guatlng this at=0 andt=2 leads to[cf. Eqgs.(3D)-
these different regions of parameter space. Also shown ir(1

these figures are the corresponding results generated from

+E;sin 2t+Fjcos 2) + O(b?).

direct numerical integration of the nonlinear differential B b?P b?P El
equations(12) and (13). These are in good agreement with ®j(2m)=®;(0)+ 2| 1- Z*’ o7 & oijcog ;(0)
the analytically derived solution.

ZP n—-1

~ (0]~ = ;1 pijSin ®;(0)—@;(0)] |,

numerical simulation

analytical calculation

1.015 1.015
numerical simulation analytical calculation
101l 101k 1.003 : - : 1.003 . ; :
1.005 1.005| | 10021 10021
. . 1.001} 1.001[/
o 1 18 1
0.995 0.995 ! 1
0.99t 0.99% 0.999+ 0.999r
0.998r 0.9981
09835 80 8 o0 95 "% 80 85 w0 9
time time
o : . _ 0950 85 w0 95 %% s 85 w0 o5
FIG. 3. Functionsb(t) corresponding to the point 1 on Fig. 2 time time

(a«=48,c=9.6) from the region wittp~1.00. Although there are .
nine junctions, only five curves are seen, since the wave forms of FIG. 5. FunctionsD;(t) corresponding to the point 3 on Fig. 2
junctions symmetrically located about the midpoint are identical. (a«=48,c=19.2) from the region wittp~0.11.
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30 T T T T T T T T T numerical solution analytical solution
1.05—With perturbation 1.05_Without perturbation
257 I 1.04} 1 1.04f;
1.03} 1.03}
20 A
1.02 /1 1.02]
1.01f 1.01 N\ h
B 1 e° 1
0.99 0.99} YRy
0.98 0.98}
| 097t | 1 o097} Mo
L 0.96 { 096 \n &
70 80 920 100
0.95 : . : 0.95 : . :
290 300 310 290 300 310
FIG. 6. Schemati¢based on the contour plot of the maximum time time

eigenvalue ofT;; as a function ofe andc for b=0.05,8=0.5,n
=10, kyax=40), identifying qualitatively different regions of pa-
rameter space.

FIG. 7. Functionsb;(t) andd{(t) corresponding to the poirt
on Fig. 6 (@=32,c=6.00; unstable regime

where we have used the fact tib(0)= ¢, +O(b). We can  an irregular fashion. This region falls outside the regime
view this as arN-dimensional map for the phase dynamics.where the perturbation expansion is valid, according to the
That it involves “only” N variables is significant, since this condition (14). Region(ll) also corresponds to an unstable
is much smaller than the phase space dimension of the origiegime, with the minimum eigenvalue ®; equal to 1 and
nal problem. In effect, the map treats the other degrees dill the other eigenvalues greater than 1. Redidn corre-
freedom as being slaved to the junction phases. sponds to a stable regime where the maximum eigenvalue is
Consider now orbits that are infinitesimally close to theequal to 1 and all the other eigenvalues are less than 1. Re-
“most-synchronized” solution we identified previously, so gion (IV) also corresponds to a stable regime, but it is quali-
that 6,= 6+ 86, , where|59,—|<|e|. Then we get(I)l-:(I)? tatively different from regior(lll) by virtue of the fact that

+6®;, where all of the eigenvalues here are close to 1, so that this is a
region of very weak stability.
mb2P  wb2p "1 Figures 7 and 8 demonstrate the behavior of the solution
<1>J°(277)=<I>°(0)+ 2m— ——+ ——— iEl aij | with parameters taken from opposite sides of the stability
o o =

threshold. Figure 7 corresponds to the pdinn region(ll),

(40 so that the initially perturbed solution never tends to the
o 2 N—1
5D (2m)= 6D (0)— —— 2 pii[ 6D (0)— 6P;(0)] numerical solution analytical solution
i j i Pij i i ' : . , .
a i=1 1.04—With perturbation 1.04—Without perturbation
(41
. 0 1.03 1.03}
with ®%(0)= 6 and 6®;(0)= 66; . We now ask whether the
perturbations grow or shrink. We can rewrite Hgl) in 1.02 1.02
matrix form, NN
. . 1.01}, 1.017
6O (2m)=T6D(0), R N /\
e 1 e’ 1
where \/ \
0.99r 0.99r
wb?P 7b?P \
le:5IJ l_fZ pmj +?p|] (42) 0.98r 0.98}
o m o
) ) _ ) 0.97} 0.97}
If we denote byr the eigenvalue of this matrix which has the
largest magnitude, the stability conditionris<1. 0.96— : - 0.96— : -
Figure 6 summarizes the behavior aof over the 290 t?r?-l% 310 2% t?r%% 310

(a,c)-parameter plane. We can identify four qualitively dif-
ferent regions of parameters space. Rediprorresponds to FIG. 8. Functionsb;(t) andd{(t) corresponding to the poiri
a regime where both and the order parametervarying in  on Fig. 6 (=40, c=8.16; stable regime
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synchronized staté)?. Figure 8 corresponds to the poit since a nonuniform spacing of junctions lowers the symme-

. . " h the initiall turbed soluti try of the problem still further. It may be that the problem
in region (Ill ) where the initially perturbed solution con- pocomes tractable again for certain spatial patterns; in any
verges to the in-phase state.

event, very little is known theoretically about this problem.
A natural question to ask is whether our results are sensi-
VI. SUMMARY AND DISCUSSION tive to weak disorder. We have presented results only for the

Our primary motivation was to develop some fundamen-£as€ where the junctions are identical and equally spaced.

tal theoretical understanding of the synchronization dynam:rhe guestion of disorder deserves careful and systematic in-

ics when the spatial extent of the array is a significant factor\.'esugat'on’ and we have not undertaken such a study. As a

As a practical matter, this is an important issue if arrays ar(’gﬁpoer:iile:juﬁétlg igegtlt?gitiaf pg:\iﬁ;iteé;g?ﬁg S‘""Qg; g]:hzzino_r
to produce greater power levels and/or operate at very higE 9, P y

frequencies, since in either instance the system gets pusha%n%ir:?ggztisvg'r?e;elsnp degééoift?ﬁea;?rggtgrgfa?teIﬁasfarallgslriga_”
out of the lumped circuit limit. We have chosen a relatively ' " : ! yp
the usual case except at bifurcation points—we are guaran-

simple situation to underscore the new physics that “turns[ . . )

" : : . : : eed that the attractors persist and vary continuously with
on’In this regime. By con§|der|ng a series array .WIthOUt anarbitrary changes in the pparameter valués To test tgis we
addltlonal Ioaq, we have |solated'the new cqupllng effECtShave run numerical simulations for oursystéfqu (12 and’
without them(i.e., at low frequencigsthe junctions are dy- (13)], including a 5% spread in the parametﬂjéand .
namically uncoupled, and no synchronization—in phase ' . . i i s
splay ph)r:tse or o'?herwise—is posiible P wherep; involves the junction parameters ardis the junc-

: _tion position. The behavior is not greatly changed, for ex-

One property of the distributed system is that the “per . . . .
fectly” synchronized state—the so-called in-phase state—ié”‘.mple’ for the conditions in Fig. 3, _the_d|sorder ha_ls a negli-
Iglble effect on phase synchronization, and introduces

not a possible solution. This makes the problem more subtle™. i f about 2% in th litudes. We miaht ¢
to study than the corresponding load-coupled lumped array ariations ot about 27 n the ampiitudes. Ve might expec
where the high degree of symmetry of the in-phase state ca e most significant changes to occur at the stability bound-

be exploited. One nice feature of the perturbation expansioﬁry Og th‘? sgnih:on_i_ze?hstgge, land in tlhe regli((l)n vtvhbelre the
we employed is that it naturally identifies a highly synchro—Sync ronized state ign the ideal caseonly weakly stable.

nized solution that may be thought of as the continuation of I;matII)g :’r:e point OtUt thl‘;"t Ithe san|1etconti|derarflons lthat
the solution branch containing the in-phase state. It is thidnotivated the present work aiso apply to other physical re-
state whose properties we analyzed. alizations of coupled oscillator arrays. Of particular note are

Another interesting and somewhat unexpected result jgrrays of semiconducto_r oscillators, which_a_re being used to
that the array can show significant synchronization eveljjmplement new strategies for power combining, beam steer-

when the most-synchronized state is unstable. The contotf9’ and beam shapirld8-20. These arrays typically oper-

plot of Fig. 2 summarizes this aspect of the problem. It iste in the distributed-coupling .Iimit in direct ana]ogy With

consistent with the stability diagram Fig. 6, and in somethe Josephson SySt.em we StUd'eq here. The spatial variations
respects is equally useful. We also found a large region o?f current in the_ stripline connecting the array elgments acts
parameter space where the most-synchronized state is stag 2" intermediary that couples the various _oscnlators. Just
but only very weakly so, and presumably in this regime thedS I the Jo_f,ephson problem, the various _deswa_ble dynamical
coherence would be easily corrupted by the presence ﬁate_s are highly synchronlzeq.An af‘a'ys's. carrled out glong
the lines here could determine which stripline conditions

qguenched disorder and dynamical noise. o
One obviously interesting variation of the problem is to would be most favorable for achieving the target attractors.

consider spatially clustered junctions, an architecture that ex-
periments have shown can result in significantly higher out-
put powers than arrays in which the junctions are equally This work was supported by a grant from the Office of
spaced6-8|. This presents a great challenge for the theoristNaval Research under Contract No. NO0014-99-1-0592.
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